Novel visible light driven Mg-Zn-In ternary layered materials for photocatalytic degradation of methylene blue

2013 
Abstract A novel visible driven Mg–Zn–In ternary layered photocatalytic materials were synthesized, for the first time, by the isomorphous replacement of Zn for Mg in coprecipitation system. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and N 2 adsorption/desorption isothermal technique reveal that this ternary photocatalytic material possesses nano-sheet morphology and high crystallinity as well as hierarchy mesoporous structure. UV–vis spectroscopy confirms that the isomorphous replacement of Zn for Mg results in a significant red shift adsorption of the calcined Mg–Zn–In LDHs toward visible light region. The calcined Mg–Zn–In LDHs samples possess a high photocatalytic activity of 98% in degradation of an organic dye methylene blue (MB) under visible light irradiation, for which the possible photocatalytic mechanisms are discussed. Moreover, this ternary layered photocatalytic material exhibits satisfactory re-usability after three cycles and a strong structural “memory effect” even after calcined at temperature of 800 °C. The higher photocatalysis activity under visible light irradiation and facilitate synthesis process enable this ternary layered material to be a promising candidate in utilization of renewable energy for environmental remediation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    32
    Citations
    NaN
    KQI
    []