Design of Proof Mass and System-Level Simulation of a Micromachined Electrostatically Suspended Accelerometer

2011 
A six-axis Micromachined Electrostatically Suspended Accelerometer (MESA) which is based on LIGA-type microfabrication was designed. MESA employs a levitated perforated plate as its proof mass. Three main purposes are considered for the design of the perforated proof mass: (1) reducing squeeze-film effect; (2) improving the dynamic response of MESA; (3) facilitating the etching of sacrificial layer under the plate. This paper utilized a finite element model for evaluating air squeeze film damping effect of perforated proof mass. Among several designs of perforated proof mass, the best choice was found. Besides, a system-level model created in CoventorWare is used to evaluate the effect of squeeze film damping and the dynamic response of the MESA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    1
    Citations
    NaN
    KQI
    []