Phosphoinositide-3-kinase inhibition elevates ferritin level resulting depletion of labile iron pool and blocking of glioma cell proliferation

2019 
Abstract Background Elevated endogenous phosphoinositide-3-kinase (PI3K) activity is critical for cell proliferation in gliomas. Iron availability is one of the essential factors for cell growth and proliferation. However, any relation between PI3K and cellular iron homeostasis has not been understood so far. Methods Glioma cells and human primary astrocytes were treated with class I PI3K inhibitors to examine regulation of iron homeostasis components. Regulation of ferritin was detected at mRNA and translational level. Labile iron pool (LIP) and cell proliferation were examined in glioma cells and human primary astrocytes. Results Blocking of PI3K activity elevated ferritin level by 6–10 folds in glioma cells by augmenting mRNA expression of ferritin subunits and also by influencing ferritin translation. IRE-IRP interaction was affected due to conversion of IRP1 to cytosolic aconitase that was influenced by increased iron-sulfur scaffold protein iron-sulfur cluster assembly enzyme (ISCU) level. Elevated ferritin sequestered LIP to affect cell proliferation that was reversed in silencing ferritin by siRNAs of ferritin-H and ISCU. Human primary astrocyte with little PI3K activity did not show any change in ferritin level, LIP and cell proliferation by PI3K inhibitors. Conclusions PI3K inhibition promotes ferritin synthesis by dual mechanism resulting sequestration of iron to limit its availability for cell proliferation in glioma cells but not in primary astrocytes. General Significance: This observation establishes a relation between PI3K signalling and iron homeostasis in glioma cells. It also implies that activated PI3K controls ferritin expression to ensure availability of adequate iron required for cell proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    2
    Citations
    NaN
    KQI
    []