Enzyme activities along the tryptophan-nicotinic acid pathway in alloxan diabetic rabbits

2002 
Abstract Recent data from our laboratory have indicated that the rabbit is a suitable animal model for the study of enzyme activities of the tryptophan-nicotinic acid pathway. We report here the pattern of tryptophan metabolism in rabbits made diabetic with alloxan treatment, and hypercholesterolemic with a high-cholesterol diet. A group of rabbits with only hypercholesterolemia was also considered. The enzymes assayed were: liver tryptophan 2,3-dioxygenase (TDO), intestine indoleamine 2,3-dioxygenase (IDO), liver and kidney kynurenine 3-monooxygenase, kynurenine-oxoglutarate transaminase, kynureninase, 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase. TDO showed a reduction of specific activity in liver of diabetic-hyperlipidemic and hyperlipidemic rabbits compared to controls. Intestine IDO activities and liver and kidney kynurenine monooxygenase were unchanged with respect to controls. Kynurenine-oxoglutarate transaminase and kynureninase activities were reduced in the kidneys, but not in the liver, of diabetic-hyperlipidemic rabbits. The main finding was the reduction of 3-hydroxyanthranilate 3,4-dioxygenase activity (expressed as activity per g of fresh tissue) in the liver and kidneys of diabetic-hypercholesterolemic and hyperlipidemic rabbits compared to controls. Conversely, aminocarboxymuconate-semialdehyde decarboxylase activity was significantly higher in diabetic hypercholesterolemic rabbits in comparison with control and hypercholesterolemic rabbits. These data demonstrate that also in diabetic rabbits there is an alteration of tryptophan metabolism at the level of 3-hydroxyanthranilic acid→nicotinic acid step. Also dyslipidemia seems to be involved in enzyme activity variations of the tryptophan metabolism along the kynurenine pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    23
    Citations
    NaN
    KQI
    []