Binary matrices under the microscope: A tomographical problem

2007 
A binary matrix can be scanned by moving a fixed rectangular window (sub-matrix) across it, rather like examining it closely under a microscope. With each viewing, a convenient measurement is the number of 1s visible in the window, which might be thought of as the luminosity of the window. The rectangular scan of the binary matrix is then the collection of these luminosities presented in matrix form. We show that, at least in the technical case of a smoothmxn binary matrix, it can be reconstructed from its rectangular scan in polynomial time in the parameters m and n, where the degree of the polynomial depends on the size of the window of inspection. For an arbitrary binary matrix, we then extend this result by determining the entries in its rectangular scan that preclude the smoothness of the matrix.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    16
    Citations
    NaN
    KQI
    []