Reconstructing the Perceived Faces from Brain Signals without Large Number of Training Samples

2020 
Reconstructing the perceived faces from brain signals has become a promising work recently. However, the reconstruction accuracies rely on a large number of brain signals collected for training a stable reconstruction model, which is really time consuming, and greatly limits its application. In our current study, we develop a new framework that can efficiently perform high-quality face reconstruction with only a small number of brain signals as training samples. The framework consists of three mathematical models: principle component analysis (PCA), linear regression (LR) and conditional generative adversarial network (cGAN). We conducted a functional Magnetic Resonance Imaging (fMRI) experiment in which two subjects’ brain signals were collected to test the efficiency of our proposed method. Results show that we can achieve state-of-the-art reconstruction performance from brain signals with a very limited number of fMRI training samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []