A model identification approach to quantify impact of whole-body vertical vibrations on limb compliant dynamics and walking stability.

2020 
Abstract Extensive research is ongoing in the field of orthoses/exoskeleton design for efficient lower limbs assistance. However, despite wearable devices reported to improve lower limb mobility, their structural impacts on whole-body vertical dynamics have not been investigated. This study introduced a model identification approach and frequency domain analysis to quantify the impacts of orthosis-generated vibrations on limb stability and contractile dynamics. Experiments were recorded in the motion capture lab using 11 unimpaired subjects by wearing an adjustable ankle–foot orthosis (AFO). The lower limb musculoskeletal structure was identified as spring-mass (SM) and spring-mass-damper (SMD) based compliant models using the whole-body centre-of-mass acceleration data. Furthermore, Nyquist and Bode methods were implemented to quantify stabilities resulting from vertical impacts. Our results illustrated a significant decrease (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    1
    Citations
    NaN
    KQI
    []