Inertia-Decoupled Equations for Hardware-in-the-Loop Simulation of an Orbital Robot with External Forces

2020 
In this paper, we propose three novel Hardware-in-the-loop simulation (HLS) methods for a fully-actuated orbital robot in the presence of external interactions using On-Ground Facility Manipulators (OGFM). In particular, a fixed-base and a vehicle-driven manipulator are considered in the analyses. The key idea is to describe the orbital robot’s dynamics using the Lagrange-Poincare $(\mathcal{L}\mathcal{P})$ equations, which reveal a block-diagonalized inertia. The resulting advantage is that noisy joint acceleration/torque measurements are avoided in the computation of the spacecraft motion due to manipulator interaction even while considering external forces. The proposed methods are a consequence of two facilitating theorems, which are proved herein. These theorems result in two actuation maps between the simulated orbital robot and the physical OGFM. The chief advantage of the proposed methods is physical consistency without level-set assumptions on the momentum map. We validate this through experiments on both types of OGFM in the presence of external forces. Finally, the effectiveness of our approach is validated through a HLS of a fully-actuated orbital robot while interacting with the environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []