Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging.

2021 
Long chain branching (LCB) structures are efficiently introduced into polylactide (PLA) by employing sustainable soybean oil (SO) under the initiation of trace amount of cyclic peroxide, which displays robust foamability and heat resistance. It is discovered that with the introduction of 0.6 wt% SO, the expansion ratio and Vicat softening temperature of LCB PLA are sharply raised to 75.2-fold and 155.8 °C, respectively, which is about 17.9 and 2.6 times those of linear PLA. This is because that the amounts of LCB structures are significantly increased in LCB PLA by the addition of SO with low reactivity of internal CC bonds, which can avoid the oligomerization reaction, resulting in more dramatically improved melting strength and crystallization performance of LCB PLA. Moreover, the hydrolytic degradation of LCB PLA is largely expedited as compared to linear PLA, owing to the more rapid water permeation caused by the loose packing of LCB structures. Finally, the PLA foam tray with light weight and good heat resistance is successfully developed by using LCB PLA with 0.6 wt% SO through extrusion foaming with supercritical carbon oxide and thermoforming techniques. Hence, this research offers a green route to produce eco-friendly light-weight and high-heat-resistance LCB-PLA foam with full biodegradability, which is an ideal alternative to the non-degradable oil-based plastics in the field of disposable packaging products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    3
    Citations
    NaN
    KQI
    []