Identification of CB1 Receptor Allosteric Sites Using Force-Biased MMC Simulated Annealing and Validation by SAR Studies

2019 
Positive allosteric modulation of the CB1R has demonstrated distinct therapeutic advantages that addresses several limitations associated with orthosteric agonism and has opened a promising therapeutic avenue for further drug development. To advance the development of CB1R positive allosteric modulators, it is important to understand the molecular architecture of CB1R allosteric site(s). The goal of this work was to use Force-Biased MMC Simulated Annealing to identify binding sites for GAT228 (R), a partial allosteric agonist and GAT229 (S), a PAM at the CB1R. Our studies suggest that GAT228 binds in an intracellular (IC) TMH1-2-4 exosite that would allow this compound to act as a CB1 allosteric agonist as well as a CB1 PAM. In contrast, GAT229 binds at the extracellular (EC) ends of TMH2/3, just beneath the EC1 loop. At this site, this compound can act as CB1PAM only. Finally, these results were successfully validated through the synthesis and biochemical evaluation of a focused library of compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    15
    Citations
    NaN
    KQI
    []