Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL‐associated vitamin E

2001 
It is clearly established that an efficient supply to the brain of α-tocopherol (αTocH), the most biologically active member of the vitamin E family, is of the utmost importance for proper neurological functioning. Although the mechanism of uptake of αTocH into cells constituting the blood–brain barrier (BBB) is obscure, we previously demonstrated that high-density lipoprotein (HDL) plays a major role in the supply of αTocH to porcine brain capillary endothelial cells (pBCECs). Here we studied whether a porcine analogue of human and rodent scavenger receptor class B, type I mediates selective (without concomitant lipoprotein particle internalization) uptake of HDL-associated αTocH in a similar manner to that described for HDL-associated cholesteryl esters (CEs). In agreement with this hypothesis we observed that a major proportion of αTocH uptake by pBCECs occurred by selective uptake, exceeding HDL3 holoparticle uptake by up to 13-fold. The observation that selective uptake of HDL-associated CE exceeded HDL3 holoparticle up to fourfold suggested that a porcine analogue of SR-BI (pSR-BI) may be involved in lipid uptake at the BBB. In line with the observation of selective lipid uptake, RT-PCR and northern and western blot analyses revealed the presence of pSR-BI in cells constituting the BBB. Adenovirus-mediated overexpression of the human analogue of SR-BI (hSR-BI) in pBCECs resulted in a fourfold increase in selective HDL-associated αTocH uptake. In accordance with the proposed function of SR-BI, selective HDL–CE uptake was increased sixfold in Chinese hamster ovary cells stably transfected with murine SR-BI (mSR-BI). Most importantly stable mSR-BI overexpression mediated a twofold increase in HDL-associated [14C]αTocH selective uptake in comparison with control cells. In line with tracer experiments, mass transfer studies with unlabelled lipoproteins revealed that mSR-BI overexpression resulted in a twofold increase in endogenous HDL3-associated αTocH uptake. The results of this study indicate that SR-BI promotes the uptake of HDL-associated αTocH into cells constituting the BBB and plays an important role during the supply of the CNS with this indispensable micronutrient.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    128
    Citations
    NaN
    KQI
    []