Multistate molecular information storage using S-acetylthio-derivatized dyads of triple-decker sandwich coordination compounds

2005 
An approach toward molecular information storage employs redox-active molecules attached to an electroactive surface. The chief advantages of such molecular capacitors include higher charge density and more versatile synthetic design than is afforded by typical semiconductor charge-storage materials. An architecture containing two triple-decker sandwich coordination complexes and an S-acetylthiomethyl-terminated tether has been designed for multibit storage. Each triple decker is composed of two phthalocyanines, one porphyrin, and two europium atoms. The oxidation potentials of each triple decker are tuned through the use of different substituents on the phthalocyanines (t-butyl, methyl, H) and porphyrins (pentyl, p-tolyl). Interleaving of the four cationic oxidation states of each triple decker potentially affords eight distinct oxidation states. Two dyads were examined in solution and in self-assembled monolayers (SAMs) on a Au surface. One dyad exhibited eight distinct states in solution and in the SAM, thus constituting a molecular octal counter. The potentials ranged from −0.1-+1.3 V in solution and +0.1-+1.6 V in the SAM. Taken together, this approach provides a viable means of achieving multibit information storage at relatively low potential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    9
    Citations
    NaN
    KQI
    []