Loss of muscular force in isolated rat diaphragms is related to changes in muscle fibre size.

2021 
OBJECTIVE Passivity of the diaphragm during prolonged mechanical ventilation can lead to ventilation-induced diaphragmatic dysfunction reasoned by a reduction of diaphragmatic muscle strength. Electrical stimulation may be utilised to modulate diaphragm muscle strength. Therefore we intended to investigate diaphragmatic muscle strength based on stimulation with electric impulses. APPROACH Diaphragms of Wistar rats were excised, embedded in various incubation solutions and placed in a diaphragm force measurement device. Pressure amplitudes generated by the diaphragm in dependency of the embedding solution, stimulation frequency and time (360 min) were determined. Furthermore, the diaphragms were histologically evaluated. MAIN RESULTS The ex vivo diaphragms evoked no pressure if embedded in incubation solutions with high potassium concentrations and up to >20 cmH2O if embedded in incubation solutions with extracellular potassium concentrations. Although vitality was well maintained after 360 min (78%) cultivation, the diaphragm's force dropped by 90.8% after 240 min. The decline in the diaphragm's force progressed faster if stimulation was performed every 20 min compared to every 120 min. The size of Type I muscle fibres was largest in diaphragms stimulated every 120 min. The fibre size of Type 2b/x muscle cells was lower in diaphragms after electrical stimulation compared to non-stimulated diaphragms. SIGNIFICANCE The force that the diaphragm can develop in ex vivo conditions depends on the incubation solution and the conditions of activation. Activity-related changes in the diaphragm's muscular force are accompanied by specific changes in muscle fibre size.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []