Phosphatidylethanolamine N-methyltransferase in human red blood cell membrane preparations. Kinetic mechanism.

1989 
Abstract The successive methylations of phosphatidylethanolamine to form phosphatidylcholine were measured using exogenously added intermediates and membrane preparations from human red blood cells. The addition of phosphatidylethanolamine resulted in no increase in methylation rate over that with endogenous substrate; however, the addition of monomethylphosphatidylethanolamine (PME) and dimethylphosphatidylethanolamine (PDE) markedly increased the reaction rate and allowed studies into the kinetic mechanism for the second and third methylation reactions. The data are consistent with catalysis of the last two methylations being by a single enzyme with a random Bi-Bi sequential mechanism. Analysis of PDE:phosphatidylcholine product ratios indicates that the enzyme can conduct multiple methylations of enzyme-bound phospholipid. The nature of the acyl chain (16:0 versus 18:1) of the phospholipid had only a small effect on the value of the kinetic constants. The maximal velocities obtained with the 18:1 substrate were less than 5% lower than those obtained with the 16:0 substrate. The Km values for the two phospholipids were 20-45 and 10-14 microM for the methylation of PME and PDE, respectively. The Km for S-adenosylmethionine (AdoMet) was 5-9 microM with PME and 4 microM with PDE as substrates. Depending on the acyl chain and the phospholipid, the Ki(AdoMet) varied from 8 to 19 microM, the Ki(PME) from 41 to 82 microM, and the Ki(PDE) from 35 to 61 microM. The Ki for S-adenosylhomocysteine (AdoHcy) was between 1.0 and 1.4 microM depending upon the variable substrate. The endogenous concentrations of PME and PDE in red blood cell membranes were estimated to be 0.49 and 0.24 mumol/liter packed cells, respectively. The product from the utilization of AdoMet, S-adenosylhomocysteine (AdoHcy), was shown to be a competitive inhibitor of its precursor, AdoMet, and a noncompetitive inhibitor of the two phospholipid substrates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    18
    Citations
    NaN
    KQI
    []