Extraction and Electrophoresis of DNA from the Remains of Mexican Ancient Populations
2012
Ten years ago, the first reports of human genome sequencing were published in Nature and Science (Venter et al., 2001; Sachidanandam et al., 2001; Lander, 2011). This was very exciting and expectations for the application of genome sequencing technology were high. In the past decade, the cost of sequencing has gone down several orders of magnitude, making it a more accessible technology for research studies. The medical value of comprehensive genome sequencing is now becoming apparent: for example, the genetic cause of a rare and debilitating vascular disorder was solved by genome sequencing at NIH (Jasny and Zahn, 2011; Lander, 2011). It is also possible to solve the genetics of individual Mendelian disorders thereby relating phenotype to genotype. In addition, better treatments for diseases such as cancer, metabolic disorders, inflammation, neurodegeneration or diabetes are expected to be found through studies involving genome sequencing (Lander, 2011). Sequencing also has been used to query variation in populations worldwide, and sequences are now available from extinct hominids as well as from thousands of other species (Rasmussen et al., 2010; Krause et al., 2010; Reich et al., 2010; Balter, 2010; Rasmussen et al., 2010). We expect to know very soon what variation exists among individuals at almost all sites in the genome. This is a great opportunity for population genetics to reconstruct the entire genealogical and mutational history of humans (Callaway, 2011), to understand the evolutionary and genetic forces that affected every region of the genome, to determine disease mutations present in human populations, to elucidate the genetic bases of cognitive and physiological adaptations, and/or to determine the demographic events that led to the colonisation of the earth.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
58
References
5
Citations
NaN
KQI