A Brown Dwarf Companion to the Nova-like Variable RW Tri

2021 
The orbital period of Nova-like variable RW Tri is expected to experience a long-term evolution due to a stable mass transfer from the red dwarf to the white dwarf. By adding 297 new eclipse timings obtained from our own observations and a cross-identification of many databases, we fully reinvestigated the variations in orbital period of RW Tri, based on a total of 658 data points spanning over 80 years. The new O-C diagram demonstrates a more complicate pattern than a pure sinusoidal modulation shown in the previous O-C analyses. The best fit of the O-C variations is a quadratic-plus-sinusoidal curve with a period of 22.66 (2) years and a typical decrease rate of P˙ = −2d.32(4) × 10−9 yr−1. To explain secular orbital period decrease, the magnetic braking effect is required to cause the orbital angular moment loss in RW Tri with a mass ratio less than unity, while a conserved mass transfer is also enough for RW Tri with a mass ratio larger than unity. No matter what the mass ratio is, a slightly enhanced mass transfer rate, 2.4–5.3 × 10−9 M⊙ yr−1, derived from our O-C diagram, providing an evidence supporting the disk instability model and the standard/revised models of cataclysmic variable evolution, is almost the same as that obtained from the light-curve modeling. This further confirms our observed orbital period decrease and the controversial system parameter, mass transfer rate. Our updated O-C analysis further verifies the claimed cyclical changes of orbital period with a period range of 21–24 years, which is approximately one half of the results in the literature. In accordance with the light-travel time effect, this periodical variation shown in our new O-C diagram indicates a brown dwarf hidden in RW Tri at a coplanar orbit. Note that the large scatter in the data range of 0–3 × 104 cycles requires the high-precision photometry in the longer base line in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []