Wind turbines in atmospheric flow – FSI simulations with hybridLES-IDDES turbulence modelling

2020 
Abstract. In order to design future large wind turbines, knowledge is needed about the impact of aero-elasticity on the rotor loads and performance, and about the physics of the atmospheric flow surrounding the turbines. The objective of the present work is to study both effects by means of high fidelity rotor-resolved numerical simulations. In particular, unsteady computational fluid dynamics (CFD) simulations of a 2.3 MW wind turbine rotor are conducted, this rotor being the largest design with relevant experimental data available to the authors. Turbulence is modeled with two different approaches. On one hand, the well established improved delayed detached eddy simulation (IDDES) model is employed. An additional set of simulations relies on a novel hybrid turbulence model, developed within the framework of the present work. It consists on the blending of a large eddy simulation (LES) model for atmospheric flow by Deardorff with an IDDES model for the separated flow near the rotor geometry. In the same way, the assessment of the influence of the blade flexibility is performed by comparing two different sets of computations. A first group accounts for a structural multi body dynamic (MBD) model of the blades. The MBD solver was coupled to the CFD solver during run time with a staggered fluid structure interaction (FSI) scheme. The second set of simulations uses the original rotor geometry, without accounting for any structural deflection. The results of the present work show no significant difference between the IDDES and the hybrid turbulence model. However, it is expected that future simulations of more complex stratification and longer domains will benefit from the developed hybrid model. In a similar manner, and due to the fact that the considered rotor was relatively stiff, the loading variation introduced by the blade flexibility was found to be negligible when compared to the influence of inflow turbulence. The simulation method validated here is considered highly relevant for future turbine designs, where the impact of blade elasticity will be significant and the detailed structure of the atmospheric inflow will be important.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []