language-icon Old Web
English
Sign In

Origin of Comet Nuclei and Dynamics

2008 
We present a review of the main physical features of comet nuclei, their birthplaces and the dynamical processes that allow some of them to reach the Sun’s neighborhood and become potentially detectable. Comets are thought to be the most primitive bodies of the solar system although some processing—for instance, melting water ice in their interiors and collisional fragmentation and reaccumulation—could have occurred after formation to alter their primordial nature. Their estimated low densities (a few tenths g cm−3) point to a very fluffy, porous structure, while their composition rich in water ice and other highly volatile ices point to a formation in the region of the Jovian planets, or the trans-neptunian region. The main reservoir of long-period comets is the Oort cloud, whose visible radius is ∼3.3×104 AU. Yet, the existence of a dense inner core cannot be ruled out, a possibility that would have been greatly favored if the solar system formed in a dense galactic environment. The trans-neptunian object Sedna might be the first discovered member that belongs to such a core. The trans-neptunian population is the main source of Jupiter family comets, and may be responsible for a large renovation of the Oort cloud population.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    8
    Citations
    NaN
    KQI
    []