Synthesis and photoluminescence characterizations of the Er3+-doped ZnO nanosheets with irregular porous microstructure

2016 
Abstract Er-doped ZnO nanosheets with high quality were synthesized by the hydrothermal and post-annealing techniques, and the effect of erbium dopant on the structures, morphologies and photoluminescence properties of the as-synthesized samples were determined using XRD, SEM, TEM, EDS, PL and Raman spectroscopy. The results showed that Er 3+ ions were successfully incorporated into the crystal lattice of ZnO host, and some irregular porous microstructure with diameter of 3–10 nm could be seen on ZnO nanosheets as various doping concentrations. It was found that the crystallization and photoluminescence properties of ZnO nanosheets were strongly influenced by erbium doping concentration. The ultraviolet emission and deep level emission were both appeared in PL spectra, and the intensity of the whole deep level emission was enhanced with erbium doping, indicating the deep-level-defect luminescent centers were increased in the doped samples. Moreover, the crystallization of the samples became worse due to more defects by erbium doping.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    17
    Citations
    NaN
    KQI
    []