Synthesis of the Carbon-Coated Nanoparticle Co9S8 and Its Electrochemical Performance as an Anode Material for Sodium-Ion Batteries
2016
A Co9S8/C nanocomposite is prepared using a solid-state reaction followed by a facile mechanical ball-milling treatment, with sucrose as the carbon source. The phases, morphologies, and detailed structures of the Co9S8/C nanocomposite are well-characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. When evaluated as an anode material for sodium-ion batteries, the Co9S8/C nanocomposite electrode displays a reversible capacity of ∼567 mA h g–1 in the initial cycle and maintains a reversible capacity of ∼320 mA h g–1 after 30 cycles, indicating a larger capacity and a stable cycling performance. For comparison, the electrochemical performances of Co9S8 and Co9S8/C samples synthesized using the solid-state reaction are also displayed. The ex situ XRD and transmission electron microscopy tests demonstrate that Co9S8 undergoes a conversion-type sodium storage mechanism.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
65
Citations
NaN
KQI