On Location Hiding in Distributed Systems

2017 
We consider the following problem – a group of mobile agents perform some task on a terrain modeled as a graph. In a given moment of time an adversary gets access to the graph and agents’ positions. Shortly before adversary’s observation the devices have a chance to relocate themselves in order to hide their initial configuration, as the initial configuration may possibly reveal to the adversary some information about the task they performed. Clearly agents have to change their locations in possibly short time using minimal energy. In our paper we introduce a definition of a well hiding algorithm in which the starting and final configurations of the agents have small mutual information. Then we discuss the influence of various features of the model on running time of the optimal well hiding algorithm. We show that if the topology of the graph is known to the agents, then the number of steps proportional to the diameter of the graph is sufficient and necessary. In the unknown topology scenario we only consider a single agent case. We first show that the task is impossible in the deterministic case if the agent has no memory. Then we present a polynomial randomized algorithm. Finally in the model with memory we show that the number of steps proportional to the number of edges of the graph is sufficient and necessary. In some sense we investigate how complex is the problem of “losing” information about location (both physical and logical) for different settings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []