Steady‐state analytical solutions of flow and deformation coupling due to a point sink within a finite fluid‐saturated poroelastic layer

2017 
Summary An exact steady-state closed-form solution is presented for coupled flow and deformation of an axisymmetric isotropic homogeneous fluid-saturated poroelastic layer with a finite radius due to a point sink. The hydromechanical behavior of the poroelastic layer is governed by Biot's consolidation theory. Boundary conditions on the lateral surface are specifically chosen to match the appropriate finite Hankel transforms and simplify the transforms of the governing equations. Ordinary differential equations in the transformed domain are solved, and then the analytical solutions in the physical space for the pore pressure and the displacements are finally obtained by using finite Hankel inversions. The analytical solutions at some special locations such as the top and bottom surfaces, lateral surface, and the symmetrical axis are given and analyzed. And a case study for the consolidation of a water-saturated soft clay layer due to pumping is conducted. The analytical solution is verified against the finite element solution. Meanwhile, an analysis of coupled hydromechanical behavior is carried out herein. The presented analytical solution is an exact solution to the practical poroelastic problem within an axisymmetric finite layer. It can provide us a better understanding of the poroelastic behavior of the finite layer due to fluid extraction. Besides, it can be applied to calibrate numerical schemes of axisymmetric poroelasticity within finite domains. Copyright © 2017 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    3
    Citations
    NaN
    KQI
    []