Coronal Line Forest AGN I: physical properties of the emission-line regions

2020 
Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are characterized by strong high-ionization lines, which contrast to what is found in most AGNs. Here, we carry out a multiwavelength analysis aimed at understanding the physical processes in the Narrow Line Region (NLR) of these objects and unveiling if they are indeed a special class of AGN. By comparing coronal emission-line ratios we conclude that there are no differences between CLiF and non-CLiF AGNs. We derive physical conditions of the narrow line region (NLR) gas and found electron densities in the range $3.6\times$10$^{2}$ - $1.7\times$10$^{4}$ cm$^{-3}$ and temperatures of $3.7\times$10$^{3}$ - $6.3\times$10$^{4}$ K, suggesting that the ionization mechanism is associated primarily with photoionization by the AGN. We suggest a NLR dominated by matter-bounded clouds to explain the high-ionization line spectrum observed. The mass of the central black hole, derived from the stellar velocity dispersion show that most of the objects have values in the interval 10$^{7-8}$~M$\odot$. Our results imply that CLiF AGN is not a separate category of AGNs. In all optical/near-infrared emission-line properties analyzed, they represent an extension to the low/high ends of the distribution within the AGN class.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    7
    Citations
    NaN
    KQI
    []