Digitoflavone Inhibits IκBα Kinase and Enhances Apoptosis Induced by TNFα through Downregulation of Expression of Nuclear Factor κB-Regulated Gene Products in Human Pancreatic Cancer Cells

2013 
Tumor necrosis factor-α (TNFα) activates both cell death and cell survival pathways. The activation of survival pathway renders most cancer cells resistant to TNF-induced cytotoxicity. We found that pretreatment with digitoflavone, a plant flavonoid, greatly sensitized TNFα-induced apoptotic cell death in several human pancreatic cancer cells. In search of the molecular basis of the sensitization effect of digitoflavone, digitoflavone was found to inhibit TNFα-induced activation of nuclear transcription factor-kappa B (NF-κB) which is the main survival factor in TNFα signaling. NF-κB suppression occurred through inhibition of IκBα kinase activation, IκBα phosphorylation, IκBα degradation, and NF-κB nuclear translocation. This inhibition correlated with suppression of NF-κB-dependent genes involved in antiapoptosis (mcl-1, bcl-2, bcl-xl, c-iap1, c-iap2, flip, and survivin), proliferation (c-myc, cyclin d1), and angiogenesis (vegf, cox-2, and mmp-9). In addition, digitoflavone can activate JNK through inhibition of NF-κB signaling, provide a continuous blockade of the feed-back inhibitory mechanism by JNK-induced NF-κB activation. This study found a novel function of digitoflavone and enhanced the value of digitoflavone as an anticancer agent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    16
    Citations
    NaN
    KQI
    []