A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method

2018 
Materials lacking in-plane symmetry are ubiquitous in a wide range of applications such as electronics, thermoelectrics, and high-temperature superconductors, in all of which the thermal properties of the materials play a critical part. However, very few experimental techniques can be used to measure in-plane anisotropic thermal conductivity. A beam-offset method based on time-domain thermoreflectance (TDTR) was previously proposed to measure in-plane anisotropic thermal conductivity. However, a detailed analysis of the beam-offset method is still lacking. Our analysis shows that uncertainties can be large if the laser spot size or the modulation frequency is not properly chosen. Here we propose an alternative approach based on TDTR to measure in-plane anisotropic thermal conductivity using a highly elliptical pump (heating) beam. The highly elliptical pump beam induces a quasi-one-dimensional temperature profile on the sample surface that has a fast decay along the short axis of the pump beam. The detect...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    8
    Citations
    NaN
    KQI
    []