PermaPhosSer: autonomous synthesis of functional, permanently phosphorylated proteins

2021 
Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study protein regulation. Previously, a genetic code expansion (GCE) system was developed to translationally install non-hydrolyzable phosphoserine (nhpSer), with the {gamma}-oxygen replaced with carbon, but it has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into Escherichia coli a biosynthetic pathway that produces nhpSer from the central metabolite phosphoenolpyruvate. Using this "PermaPhosSer" system -- an autonomous 21-amino acid E. coli expression system for incorporating nhpSer into target proteins -- we show that nhpSer faithfully mimics the effects of phosphoserine in three stringent test cases: promoting 14-3-3/client complexation, disrupting 14-3-3 dimers, and activating GSK3-{beta} phosphorylation of the SARS-CoV-2 nucleocapsid protein. This facile access to nhpSer containing proteins should allow nhpSer to replace Asp and Glu as the go-to pSer phosphomimetic for proteins produced in E. coli.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    0
    Citations
    NaN
    KQI
    []