Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes

2012 
Abstract Titania nanoparticles were modified by free-radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) at the particle surface, resulting in the formation of a 1–2 nm thick polymer brush. The zwitterionic nature of the polymer layer suggests that the suspension stability is a delicate function of pH, as well as volume fraction, salt concentration and the presence of charged or un-charged additives which may act as depletants or to screen charge interactions in the system. In this context, we characterized the suspension rheology as a function of volume fraction, pH, ionic strength and the concentration of surfactants in the suspension. Near-neutral pH, the brush layer is effective in stabilizing particles against aggregation with Newtonian behavior observed for volume fractions approaching 14%. Flocculation of particles and an onset of shear-thinning behavior was observed on decreasing pH from near-neutral. Conversely, suspension stability was maintained on increasing pH from near-neutral. Likewise, flocculation could be quickly induced by the addition of salt and cationic surfactant in small amounts, but the suspensions displayed greater stability to anionic and non-ionic surfactant additives. These results have important implications for the successful formulation of complex fluids employing zwitterionic colloids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    5
    Citations
    NaN
    KQI
    []