Addressing the issues of non-isotropy and non-additivity in the development of quantum chemistry-grounded polarizable molecular mechanics.

2015 
We review two essential features of the intermolecular interaction energies (ΔE) computed in the context of quantum chemistry (QC): non-isotropy and non-additivity. Energy-decomposition analyses show the extent to which each comes into play in the separate ΔE contributions, namely electrostatic, short-range repulsion, polarization, charge-transfer and dispersion. Such contributions have their counterparts in anisotropic, polarizable molecular mechanics (APMM), and each of these should display the same features as in QC. We review examples to evaluate the performances of APMM in this respect. They bear on the complexes of one or several ligands with metal cations, and on multiply H-bonded complexes. We also comment on the involvement of polarization, a key contributor to non-additivity, in the issues of multipole transferability and conjugation. In the last section we provide recent examples of APMM validations by QC, which relate to interactions taking place in the recognition sites of kinases and metalloproteins. We conclude by mentioning prospects of extensive applications of APMM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    199
    References
    0
    Citations
    NaN
    KQI
    []