Influence of two-phase thermocapillary flow on liquid retention in microscopic pores

1995 
An important feature of screened propellant acquisition devices is the retention capability or maximum maintainable pressure difference across the porous barrier separating the liquid and gas. Previous experiments with liquid hydrogen showed a marked reduction in retention when the tank containing the device was pressurized with hydrogen vapor. These tests, however did not indicate any appreciable degradation in retention with helium pressurization or direct heating through the screen. The objective of this article is to determine if the thermocapillary convection arising from phase change in the microscopic pores of such screens could cause these disparities in performance. A numerical model of flow in a single pore suggests that the thermocapillary-induced gradient in liquid pressure along the surface can strongly affect surface morphology. In an evaporative environment, this gradient exerts a stabilizing influence on surface curvature, and preserves the momentum balance between the liquid and gas. With condensation, it causes a force imbalance and a destabilizing suction in the middle of the pore that reduces retention. Results also indicate that introducing an inert gas, such as helium, suppresses this retention loss mechanism by lowering thermocapillary circulation and its associated interfacial pressure gradient.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []