Specificity of oxidation of linoleic acid homologs by plant lipoxygenases

2009 
The lipoxygenase-catalyzed oxidation of linoleic acid homologs was studied. While the linoleic acid oxidation by maize 9-lipoxygenase (9-LO) specifically produced (9S)-hydroperoxide, the dioxygenation of (11Z,14Z)-eicosadienoic (20:2) and (13Z,16Z)-docosadienoic (22:2) acids by the same enzyme lacked regio- and stereospecificity. The oxidation of 20:2 and 22:2 by 9-LO afforded low yields of racemic 11-, 12-, 14-, and 15-hydroperoxides or 13- and 17-hydroperoxides, respectively. Soybean 13-lipoxygenase-1 (13-LO) specifically oxidized 20:2, 22:2, and linoleate into (ω6S)-hydroperoxides. Dioxygenation of (9Z,12Z)-hexadecadienoic acid (16:2) by both 9-LO and 13-LO occurred specifically, affording (9S)- and (13S)-hydroperoxides, respectively. The data are consistent with the “pocket theory of lipoxygenase catalysis” (i.e. with the penetration of a substrate into the active center with the methyl end first). Our findings also demonstrate that the distance between carboxyl group and double bonds substantially determines the positioning of substrates within the active site.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    15
    Citations
    NaN
    KQI
    []