Multidimensional thermodynamic uncertainty relations

2019 
We extend a class of recently derived thermodynamic uncertainty relations to vector-valued observables. In contrast to the scalar-valued observables examined previously, this multidimensional thermodynamic uncertainty relation provides a natural way to study currents in high-dimensional systems and to obtain relations between different observables. Our proof is based on the generalized Cramer–Rao inequality, which we interpret as a relation between physical observables and the Fisher information. This allows us to develop high-dimensional versions of both the original, steady state uncertainty relation and the more recently obtained generalized uncertainty relation for time-periodic systems. We apply the multidimensional uncertainty relation to obtain a new constraint on the performance of steady-state heat engines, which is tighter than previous bounds and reveals the role of heat-work correlations. As a second application, we show that the uncertainty relation is connected to a bound on the differential mobility. As a result of this connection, we find that a necessary condition for equality in the uncertainty relation is that the system obeys the equilibrium fluctuation–dissipation relation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    36
    Citations
    NaN
    KQI
    []