Fabrication of copper phthalocyanine/reduced graphene oxide nanocomposites for efficient photocatalytic reduction of hexavalent chromium

2020 
Abstract Copper(II) phthalocyanine (CuPc) and non-peripheral octamethyl-substituted copper(II) phthalocyanine (N-CuMe2Pc) were combined with reduced graphene oxide (rGO) via a precipitation method to form CuPc/rGO and N-CuMe2Pc/rGO nanocomposites, respectively. CuPc nanorods are distributed on rGO, and N-CuMe2Pc exists as nanorods and nanoparticles on rGO. The Cr(VI) removal ratio of N-CuMe2Pc/rGO exposed in simulated sunlight is 99.0% with a fast photocatalytic reaction rate of 0.0320 min−1, which is approximately 1.5 times faster than that of CuPc/rGO (0.0215 min−1) and far surpasses that of pristine phthalocyanine and rGO. As an electron acceptor, rGO can suppress the recombination of photo-induced electron-hole pairs and also can provide a large surface area for Cr(VI) removal, both of which are beneficial to the reducing capacity of the nanocomposites. The higher removal efficiency of N-CuMe2Pc/rGO compared with that of CuPc/rGO is attributed to the higher specific surface area, higher light harvesting, higher conductivity and more negative lowest unoccupied molecular orbital level of N-CuMe2Pc/rGO. The N-CuMe2Pc/rGO nanocomposite shows excellent photochemical recyclability which is essential for application in wastewater treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    8
    Citations
    NaN
    KQI
    []