Cholate-independent retinyl ester hydrolysis. Stimulation by Apo-cellular retinol-binding protein.

1991 
Abstract Apo-cellular retinol-binding protein (apoCRBP) activated the hydrolysis of endogenous retinyl esters in rat liver microsomes by a cholate independent retinyl ester hydrolase. A Michaelis-Menten relationship was observed between the apoCRBP concentration and the rate of retinol formation, with half-maximum stimulation at 2.6 +/- 0.6 microM (mean +/- S.D., n = 5). Two other retinol-binding proteins, bovine serum albumin and beta-lactoglobulin, acceptors for the rapid and spontaneous hydration of retinol from membranes, had no effect up to 90 microM. These data suggest activation of the hydrolase by apoCRBP directly, rather than by facilitating removal of retinol from membranes. The hydrolase responding was the cholate-independent/cholate-inhibited retinyl ester hydrolase as shown by: 60% inhibition of the apoCRBP effect by 3 mM cholate; apoCRBP enhancement of retinyl ester hydrolysis in liver microsomes that had no detectable cholate-enhanced activity; inhibition of cholate-dependent, but not apoCRBP-stimulated retinyl ester hydrolysis by rabbit anti-rat cholesteryl esterase. Compared to the rate (mean +/- S.D. of [n] different preparations) supported by 5 microM apoCRBP in liver microsomes of 6.7 +/- 3.7 pmol/min/mg protein [10], microsomes from rat lung, kidney, and testes had endogenous retinyl ester hydrolysis rates of 1.8 +/- 0.3 [5], 0.5 +/- 0.2 [3], and 0.3 +/- 0.2 [5] pmol/min/mg protein, respectively. N-Ethylmaleimide and N-tosyl-L-phenylalanine chloromethyl ketone were potent inhibitors of apoCRBP-stimulated hydrolysis with IC50 values of 0.25 and 0.15 mM, respectively, but phenylmethylsulfonyl fluoride and diisopropyl-fluorophosphate were less effective with IC50 values of 1 mM, indicating the importance of imidazole and sulfhydryl groups to the activity. These data provide evidence of a physiological role for the cholate-independent hydrolase in retinoid metabolism and suggest that apoCRBP is a signal for retinyl ester mobilization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    81
    Citations
    NaN
    KQI
    []