Cholera toxin-induced modulation of gene expression: elucidation via cDNA microarray for rational cell-based sensor design

2002 
Abstract Cell-based biosensors utilize functional changes in cellular response to identify the biological threats in a physiological relevant manner. Cell-based sensors have been used for a wide array of applications including toxicological assessment and drug-screening. In this paper, we utilize DNA arrays to identify differential gene expression events induced by toxin exposure for the purpose of developing a reporter gene assay system compatible with insertion into a cell-based sensor platform. HT29, an intestine epithelial cell line, was used as a cell model to study the cholera toxin (CT)-induced host cell modulation using DNA array analysis. A false positive model was generated from analysis of housekeeping genes in untreated control experiments to characterize our system and to minimize the number of false positives in the data. Threshold probability scores (−3.72), which gives apolipoprotein D ( Apol D ), E-cadherin , and cyclin A2 , were confirmed. The differential expression of genes encoding cytochrome P450 , glutathione transferase (GST), and MGAT2 were noteworthy and consistent with previous studies. Our study provides an approach to analyze cDNA microarray data with defined false positive rates. The utility of cDNA microarray information for the design of cell-based sensor using a reporter gene approach is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    13
    Citations
    NaN
    KQI
    []