One-step room temperature synthesis of very small γ-Fe{sub 2}O{sub 3} nanoparticles
2013
Graphical abstract: - Highlights: • One-step synthesis of 3 nm maghemite nanoparticles is reported. • Maghemite nanoparticles can be synthesized from a ferric solution. • γ-Fe{sub 2}O{sub 3} NPs can be obtained if the precursor has Fe(III) in tetrahedral interstices. • HR-TEM, Mossbauer, XAFS and magnetometry analysis proved the maghemite existence - Abstract: Very small maghemite nanoparticles (∼3 nm) are obtained through a one-step synthesis at room temperature. The fast neutralization reaction of a ferric solution in a basic medium produces an intermediate phase, presumably two-line ferrihydrite, which in oxidizing conditions is transformed to maghemite nanoparticles. The synthesis of maghemite, as final product of the reaction, was characterized by High-Resolution Transmission Electron Microscopy (HR-TEM), X-ray Absorption Fine Structure (XAFS), Mossbauer spectroscopy, and magnetometry. The XAFS technique allowed the analysis of the crystallographic variations into maghemite nanoparticles as a result of modification in its surface/volume ratio. Mossbauer spectroscopy at low temperature (4.2 K) confirms the presence of Fe(III) in tetrahedral and octahedral interstices, in the stoichiometry corresponding to maghemite. The specific magnetization, M vs H (3 K and 300 K, up to 7 T) and temperature dependence of the magnetization (50 Oe by ZFC mode, 2 K ≤ T ≤ 300more » K) indicate that maghemite nanoparticles of 3 nm are in superparamagnetic state with a blocking temperature close to 36 K.« less
Keywords:
- Correction
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI