Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries

2020 
Abstract It is important to develop a simple, facile and environmentally friendly strategy for improving the properties of materials in various energy storage systems. Herein, a binder-free anode based on self-assembled nanowires structures with GeSe particles is formed through a rapid box thermal deposition and first reported as an advanced anode for lithium/sodium-ion batteries. For LIBs, it delivers an excellent energy storage performance with high specific capacity (∼815.49 mAh g-1 at 200 mA g-1 after 300 cycles), superior rate capability (∼578.49 mAh g-1 for 10 cycles at 4000 mA g-1) and outstanding cycling stability (∼87.78% of capacity retention after 300 cycles). It even shows a high reversible capacity of 359.5 mAh g-1 at 500 mA g-1 after 2000 cycles. For SIBs, it shows good cycling stability (∼433.4 mAh g-1 at 200 mA g-1 after 50 cycles with ∼85.3% capacity retention) and rate performance (∼299.7 mAh g-1 for 10 cycles at 1000 mA g-1). In this electrode, GeSe nanowires (GeSe-NWs) consist of nanoparticles with voids between them that shorten the diffusion length for lithium/sodium ions and electrons and buffer the volumetric variation during the lithium/sodium ion insertion/extraction process. In addition, the introduction of Ni foam frameworks enhances the electrical conductivity of the electrode and retains the structural integrity upon cycling. This approach provides a new perspective for investigating and synthesizing various novel and suitable materials for energy storage fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    4
    Citations
    NaN
    KQI
    []