Dynamic Handwriting Signal Features Predict Domain Expertise
2018
As commercial pen-centric systems proliferate, they create a parallel need for analytic techniques based on dynamic writing. Within educational applications, recent empirical research has shown that signal-level features of students’ writing, such as stroke distance, pressure and duration, are adapted to conserve total energy expenditure as they consolidate expertise in a domain. The present research examined how accurately three different machine-learning algorithms could automatically classify users’ domain expertise based on signal features of their writing, without any content analysis. Compared with an unguided machine-learning classification accuracy of 71%, hybrid methods using empirical-statistical guidance correctly classified 79–92% of students by their domain expertise level. In addition to improved accuracy, the hybrid approach contributed a causal understanding of prediction success and generalization to new data. These novel findings open up opportunities to design new automated learning analytic systems and student-adaptive educational technologies for the rapidly expanding sector of commercial pen systems.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
16
Citations
NaN
KQI