Cell signaling pathways to αB-crystallin following stresses of the cytoskeleton
2006
Small heat shock proteins (sHSPs) act as chaperone, but also in protecting the different cytoskeletal components. Recent results suggest that αB-crystallin, a member of sHSPs family, might regulate actin filament dynamics, stabilize them in a phosphorylation dependent manner, and protect the integrity of intermediate filaments (IF) against extracellular stress. We demonstrate that vinblastin and cytochalasin D, which respectively disorganize microtubules and actin microfilaments, trigger the activation of the p38/MAPKAP2 kinase pathway and lead to the specific αB-crystallin phosphorylation at serine 59. Upstream of p38, we found that RhoK, PKC and PKA are selectively involved in the activation of p38 and phosphorylation of αB-crystallin, depending on the cytoskeletal network disorganized. Moreover, we demonstrate that chronic perturbations of IF network result in the same activation of p38 MAPK and αB-crystallin phosphorylation, as with severe disorganization of other cytoskeletal networks. Finally, we also show that Ser 59 phosphorylated αB-crystallin colocalizes with cytoskeletal components. Thus, disturbance of cytoskeleton leads by converging signaling pathways to the phosphorylation of αB-crystallin, which probably acts as a protective effector of the cytoskeleton.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
74
References
83
Citations
NaN
KQI