A chaotic oscillator using Carbon Nanotube based transistors

2013 
A simple and low-power-based discrete-time chaotic oscillator based on Carbon Nanotube Field-Effect Transistors (CNFETs) is presented in this paper. The CNFET is built in SPICE using Wong and Deng's well-known model. The chaotic circuit is composed of a nonlinear circuit that creates an adjustable chaos map, two sample and hold cells for capture and delay functions, and a voltage shifter that works as a buffer and adjusts the output voltage for feedback. The operation of the chaotic circuit was verified via time series and power spectra in the SPICE with a supply voltage of 0.9 V and a frequency of 20 kHz conditions. The CNT-based chaotic circuit design is better at thermal reliability and power consumption in comparing with presented MOS-based design making it suitable for systems where many chaos-signal generators are required on a single chip.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []