A Network Dimensioning Tool
1996
Designing low cost networks that survive certain failure situations belongs to one of the prime tasks in the telecommunications industry. In this paper we describe a mathematical model combining several aspects of survivability that are elsewhere treated in a hierarchical fashion. We present mathematical investigations of this integrated model, a cutting plane algorithm, as well as several heuristics for its solution. Moreover, we report computational results with real world data. The problem we address is the following. Suppose, between each pair of nodes in a region, a communication demand is given. We want to determine the topology of a telecommunication network connecting the given nodes and to dimension all potential physical links. For each link, the possible capacities are restricted to a given finite set. The capacities must be chosen such that the communication demands are satisfied, even if certain network components fail, and such that the network building costs are as small as possible. Moreover, for each pair of nodes and each failure situation, we want to determine the paths on which the demand between the nodes is routed.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
18
References
18
Citations
NaN
KQI