Kinetics and Nucleation Dynamics in Ion-Seeded Atomic Clusters

2021 
The time-dependent kinetics of formation and evolution of nano-size atomic clusters is investigated and illustrated with the nucleation dynamics of ion-seed Ar$_n$H$^+$ particles. The rates of growth and degradation of Ar-atomic shells around the seed ion are inferred from Molecular Dynamics (MD) simulations. Simulations of cluster formation have been performed with accurate quantum-mechanical binary interaction potentials. Both the nonequilibrium and equilibrium growth of Ar$_n$H$^+$ are investigated at different temperature and densities of the atomic gas and seed ions. Formation of Ar$_{n\leq 40}$ shells is the main mechanism which regulates the kinetics of nano-cluster growth and the diffusive fluctuations of the cluster size distribution. The time-evolution of the cluster intrinsic energy and cluster size distributions are analyzed at the non-thermal, quasi-equilibrium, and thermal equilibrium stages of Ar$_n$H$^+$ formation. We've determined the self-consistent model parameters for the temporal fluctuations of the cluster size and found coefficients of the diffusive growth mechanism describing the equilibrium distribution of nano-clusters. Nucleation of haze and nano-dust particles in astrophysical and atmospheric ionized gases are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []