Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study

2000 
Abstract It is well established that oxidative modification of low-density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. To examine the influence of different agents which may influence LDL-glycation and oxidation, experiments including glycation with glucose, glucose 6-phosphate, metal chelators (EDTA) and antioxidants (BHT) were perfomed. The influence of time dependence on the glycation process and the alteration of the electrophoretic mobility of LDL under diverse glycation and/or oxidation conditions was also investigated. The formation of conjugated dienes and levels of lipid peroxides in these different LDL-modifications were estimated. The copper-induced oxidation of LDL in vitro was determined by measurement of thiobarbituric acid reactive substances (TBARS) and expressed as nmol MDA/mg of LDL protein. We found that glycated LDL is more prone to oxidation than native LDL. Using native LDL, the maximal oxidation effect was found to reach a value of 49.72 nmol MDA/mg protein after 8 h. The maximum oxidation of the 31 days, glycated LDL with glucose was 71.76 nmol MDA/mg protein amounting to 144.33% of the value found for native LDL. In the case of glucose 6-phosphate glycation, the maximum oxidation under the same conditions amounted to 173.77% of the value found for native LDL. To measure the extent of glycation, fluorescence of advanced glycation end products (AGEs) was determined (370 nm excitation and 440 nm emission). The most potent glycation agent was glucose 6-phosphate leading to the formation of very high amounts of AGEs. This process was promoted in the absence of EDTA, which prevents the oxidative cleavage of modified Amadori products (ketoamines) to AGEs. We therefore conclude that both processes, glycation and oxidation, result in the modification of LDL. The lower the glycation-rate (+/− EDTA) as measured by relative fluorescence units RFU (generation of AGEs), the lower the additional oxidation rate after glycation as measured by TBARS (generation of MDA equivalents). Glycation and/or oxidation change the electrophoretic mobility of LDL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    60
    Citations
    NaN
    KQI
    []