Redox Regulation of Homeostasis and Proteostasis in Peroxisomes

2018 
Peroxisomes are highly dynamic intracellular organelles involved in a variety of metabolic functions essential for the metabolism of long-chain fatty acids, d-amino acids, and many polyamines. A byproduct of peroxisomal metabolism is the generation, and subsequent detoxification, of reactive oxygen and nitrogen species, particularly hydrogen peroxide (H2O2). Because of its relatively low reactivity (as a mild oxidant), H2O2 has a comparatively long intracellular half-life and a high diffusion rate, all of which makes H2O2 an efficient signaling molecule. Peroxisomes also have intricate connections to mitochondria, and both organelles appear to play important roles in regulating redox signaling pathways. Peroxisomal proteins are also subject to oxidative modification and inactivation by the reactive oxygen and nitrogen species they generate, but the peroxisomal LonP2 protease can selectively remove such oxidatively damaged proteins, thus prolonging the useful lifespan of the organelle. Peroxisomal homeosta...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    274
    References
    44
    Citations
    NaN
    KQI
    []