Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V 2 O 3

2007 
We present a study of the paramagnetic metallic and insulating phases of vanadium sesquioxide by means of the Nth order muffin-tin orbital implementation of density functional theory combined with dynamical mean-field theory. The transition is shown to be driven by a correlation-induced enhancement of the crystal-field splitting within the t 2g manifold, which results in a suppression of the hybridization between the a 1g and e g π bands. We discuss the changes in the effective quasiparticle band structure caused by the correlations and the corresponding self-energies. At temperatures of about 400 K, we find the a 1g orbital displays coherent quasiparticle behavior, while a large imaginary part of the self-energy and broad features in the spectral function indicate that the e g π orbitals are still far above their coherence temperature. The local spectral functions are in excellent agreement with recent bulk sensitive photoemission data. Finally, we also make a prediction for angle-resolved photoemission experiments by calculating momentum-resolved spectral functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    110
    Citations
    NaN
    KQI
    []