A computational investigation on the potential energy surface of thiosulfeno with O(3P) reaction

2013 
The reaction paths of thiosulfeno radical (HS2) with O(3P) have been investigated at the UB3LYP/aug-cc-pV(T + d)Z and UCCSD(T)/aug-cc-pV(T + d)Z//B3LYP levels. Two stable collision intermediates, HSSO and SS(H)O, have been considered for the HS2 + O(3P) reaction. Four products of S + HSO, H + SSO, HS + SO, and S2 + OH are obtained by starting from HSSO and SS(H)O. The calculated results show that the most feasible paths for the formation of S + HSO, H + SSO, and HS + SO products include no transition states in reaction path, while that of S2 + OH product includes relatively high energy barriers of 23.0 kcal/mol. Therefore, S + HSO, H + SSO, and HS + SO are main products (with the stability other of HS + SO > H + SSO > S + HSO) and S2 + OH is the second product in HS2 + O(3P) reaction. Because, all intermediates, transition states, and products involved in the reaction paths lie below the initial reactants, the HS2 + O(3P) reaction is expected to be rapid even at low temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    4
    Citations
    NaN
    KQI
    []