Enhancing the reliability of landslide early warning systems by machine learning

2020 
This paper submits a report on the effective adoption of machine learning algorithms for enhancing the reliability of rainfall-induced landslides. The challenges involved in the design of reliable landslide early warning systems (LEWS) and the data-driven context for overcoming these challenges have been presented. The operation of LEWS is explained using the chain of five major components (i) Data collection, (ii) Data transmission, (iii) Modelling, analysis and forecasting, (iv) Warning, and (v) Response. Failure of any of these major components of the LEWS will break the chain of operation of LEWS and the ensued consequences of each component failure are reviewed. Inferences drawn from the analysis of the reliability measures incorporated in 12 LEWS deployments across a dozen locations around the world are also presented. Based on the investigations from 12 LEWS and the real-world experience, we identified that an alternate solution is required for ensuring the reliability of LEWS, especially during disaster scenarios when warnings are crucial, but data availability is a constraint. We recognized that machine learning algorithms can provide an alternate solution and in this paper, we have discussed two machine learning approaches nowcasting and forecasting for enhancing the reliability. Both the algorithms employ historic data of the landslide monitoring parameters to learn the changes materializing in slope leading to landslide incidences. The learned knowledge is used to nowcast and forecast the real-time and future conditions of the slope from the real-time landslide monitoring parameters. In terms of ensuring reliability, (i) Nowcasting algorithm provides an alternate solution if either the Data collection component or Data transmission component of a LEWS fails. (ii) Forecasting algorithm provides extra lead-time for early warning and solves the problem of less lead-time during early warning process. The breakthrough is even when the real-time landslide monitoring parameters are not available for various reasons, these algorithms take the minimal input of rainfall forecast information for nowcasting and forecasting thus restoring the broken chain of operation of LEWS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    6
    Citations
    NaN
    KQI
    []