Deep learning in nano-photonics: inverse design and beyond

2021 
Deep learning in the context of nano-photonics is mostly discussed in terms of its potential for inverse design of photonic devices or nanostructures. Many of the recent works on machine-learning inverse design are highly specific, and the drawbacks of the respective approaches are often not immediately clear. In this review we want therefore to provide a critical review on the capabilities of deep learning for inverse design and the progress which has been made so far. We classify the different deep learning-based inverse design approaches at a higher level as well as by the context of their respective applications and critically discuss their strengths and weaknesses. While a significant part of the community's attention lies on nano-photonic inverse design, deep learning has evolved as a tool for a large variety of applications. The second part of the review will focus therefore on machine learning research in nano-photonics "beyond inverse design". This spans from physics informed neural networks for tremendous acceleration of photonics simulations, over sparse data reconstruction, imaging and "knowledge discovery" to experimental applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    166
    References
    25
    Citations
    NaN
    KQI
    []