Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data
2016
Extensive flight data is being collected throughout the MMS mission that includes quantities that are of interest for attitude dynamics studies such as spin rate, spin axis orientation nutation rate, etc. One example of such data is the long-term evolution of the spin rates of the four spacecraft. Spikes in these rates are observed that are separated by the MMS orbital period (just under 24 hr) and occur around perigee due to gravity-gradient torque. Periodic discontinuities in spin rate are caused by the controller resetting the spin rate approximately to the nominal 3.1 RPM value at the time of each maneuver. In between, a slow decay in spin rate can be seen to occur. The paper will discuss various disturbance torque mechanisms that could potentially be responsible for this behavior: these include magnetic hysteresis, eddy currents, solar radiation pressure, and a possible interaction between gravity-gradient and wire boom flexibility effects. One additional disturbance mechanism is produced by the Active Spacecraft Potential Control (ASPOC) devices: these emit positive indium ions to keep the MMS spacecraft electrically neutral, so as not to corrupt the electric field observations that are made by some of the on-board instruments. The spin rate decays that could be produced by these various mechanisms will be quantified in the paper, and their signatures described. Comparing these with the observations from flight data then allow the most likely candidate to be determined.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
10
References
3
Citations
NaN
KQI