A constructive formalization of the weak perfect graph theorem.

2020 
The Perfect Graph Theorems are important results in graph theory describing the relationship between clique number ω(G) and chromatic number χ(G) of a graph G. A graph G is called perfect if χ(H)=ω(H) for every induced subgraph H of G. The Strong Perfect Graph Theorem (SPGT) states that a graph is perfect if and only if it does not contain an odd hole (or an odd anti-hole) as its induced subgraph. The Weak Perfect Graph Theorem (WPGT) states that a graph is perfect if and only if its complement is perfect. In this paper, we present a formal framework for working with finite simple graphs. We model finite simple graphs in the Coq Proof Assistant by representing its vertices as a finite set over a countably infinite domain. We argue that this approach provides a formal framework in which it is convenient to work with different types of graph constructions (or expansions) involved in the proof of the Lovasz Replication Lemma (LRL), which is also the key result used in the proof of Weak Perfect Graph Theorem. Finally, we use this setting to develop a constructive formalization of the Weak Perfect Graph Theorem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    1
    Citations
    NaN
    KQI
    []