3D Bioprinted Muscle-Based Bio-Actuators: Force Adaptability Due to Training

2018 
The integration of biological tissue and artificial materials plays a fundamental role in the development of biohybrid soft robotics, a subfield in the field of soft robotics trying to achieve a higher degree of complexity by taking advantage of the exceptional capabilities of biological systems, like self-healing or responsiveness to external stimuli. In this work, we present a proof-of-concept 3D bioprinted bio-actuator made of skeletal muscle tissue and PDMS, which can act as a force measuring platform. The 3D bioprinting technique, which has not been used for the development of bio-actuators, offers unique versatility by allowing a simple, biocompatible and fast fabrication of hybrid multi-component systems. Furthermore, we prove controllability of contractions and functionality of the bio-actuator after applying electric pulses by measuring the exerted forces. We observe an increased force output in time, suggesting improved maturation of the tissue, opening up possibilities for force adaptability or modulation due to prolonged electrical stimuli.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    6
    Citations
    NaN
    KQI
    []